彩神app平台-彩神app官网网址
彩神app官方网站2024-05-29

彩神app平台

还记得《少林寺》经典画面吗?这位传奇老人走了……******

  中新网北京1月17日电(记者 王诗尧)著名武术家、演员于海于1月16日去世,享年81岁。

  于海是山东烟台人,1954年,年仅12岁的于海拜七星螳螂拳大师林景山为师,学习正宗的螳螂拳,由此开启了他的武术生涯。

李连杰(左)与于海(右)。图片来源:电影《少林寺》截图

  出演传奇电影《少林寺》

  成为李连杰“客师”

  1982年,一部名叫《少林寺》的电影,书写了一个“一毛钱一张电影票创下上亿票房”的奇迹。电影开拍之初,导演一改过去选用职业演员的惯例,全部采用了具备武术功底的专业人士,于海也因此被邀请参演了人生中第一个大银幕角色“昙宗大师”。

  当时外界对于武术运动员出演电影颇为担心,认为他们并不懂得演戏,又如何能保证电影的质量?但是导演张鑫炎则一直坚持己见,他认为只有武术运动员才能真正表现出少林功夫的精髓。

  在此背景下,七星螳螂拳传人于海早早被剧组看中。最终,电影《少林寺》汇集了来自全国各地的24名武术运动员,主演李连杰就是其中一员。

电影《少林寺》截图

  据悉,李连杰出演这部电影之前,还发生过一个有趣的小插曲。当时17岁的李连杰因为在电影《塞外夺宝》的演员海选中落选,正生着闷气。虽然知道导演张鑫炎正在为《少林寺》挑选演员,但他仍不愿意见,最后还是被运动队叫来面试,促成了这次合作。

  电影里于海饰演的昙宗大师与李连杰饰演的小虎,二人是师徒关系。由此外界常把李连杰归为于海的得意门生,他曾解释道:“其实我只是他的客师,他的启蒙老师是原北京武术队的教练吴斌。一个武术运动员会有很多的客师,但是启蒙老师却只有一个。”不过,于海补充说:“我教过李连杰螳螂拳和陈氏太极拳,他是个很刻苦的孩子。”

于海参加节目讲述拍摄《少林寺》期间的故事。图片来源:央视截图

  “没有影迷,就没影星”

  武打演员不受点伤不出色

  据《少林寺》副导演、香港知名电影人施扬平透露,电影中每个演员都是武术指导,因此采用了“谁打谁编”的原则。这些具备真刀实枪功夫的演员,集体为观众们呈现了一场场精彩绝伦的武术盛宴。鹰拳、螳螂拳、三节棍、九节鞭等中华武术绝学,在电影里轮番登场,最终使《少林寺》成为难以逾越的经典。

  虽然《少林寺》是于海拍摄的第一部电影,但是他依旧拿出全力以赴的武术精神完成拍摄。他说,当初拍摄时间非常紧张,而片中的马戏又很多,他便只用了两个上午的时间练习骑术,便投入拍摄。

螳螂拳传人于海。图片来源:央视截图

  影片中有一组于海在路上骑马疾驰的镜头,当时他的马速很快,拐弯时不巧被一棵杨树挡在了前面,正想收缰却已经来不及了,他的身子平飞了出去。出于本能,于海用两条胳膊护住了头部,但手臂却没能幸免:手腕、肘部脱臼,左手撞断。

  《少林寺》上映后掀起了观影热潮,于海也跟着人气大涨,此后又接演了《南北少林》《太极宗师》《新少林寺》等影片。

电影《少林寺》动图

  越来越多影迷被于海精湛的武术表演所震撼,对他表达喜爱之情。渐渐地在一些公共场合,于海会遇到热情的影迷想要他签名、合影,即便当时他再累,也会一一满足影迷的要求。他说:“我永远记得,‘没有影迷就没影星,’‘盛名之下,其实难副’这两句话。”

  知名度的提升丝毫不影响于海对武打表演的态度,“有时伤病还没好,打上石膏还得打,原地打、站着打。有时候站久了,脚肿得鞋都穿不进去。”他说,“练武术的就是脑袋比较木,自己也跟自己较劲,一定要达到那个程度。其实做武打演员,不受点伤、不受点痛是做不出色的。”

于海参加节目讲述拍摄《少林寺》期间的故事。图片来源:央视截图

  吴京悼念“老师一路走好”

  网友不舍,分享童年回忆

  1月17日凌晨,演员吴京发布微博悼念于海:“惊悉于海老师逝世,不胜悲痛。《功夫小子创情关》《太极宗师》《新少林寺》《少林武王》……仿佛还历历在目,于海老师一路走好。”

吴京发微博悼念于海。

  于海与吴京曾合作多部影片,他也对这名后辈青睐有加,“我对吴京比较熟悉,这个孩子很刻苦,当年一起拍《太极宗师》的时候,我就很看好他。”

  对于于海的离世,许多网友也纷纷发文与其告别。有网友称,自己小时候最崇敬的功夫大师就是于海;也有人表示,他即使不是主角依旧能给人留下深刻的印象,形容于海的作用就好像是顶梁柱,“有他当师傅,主角就会很有底气的感觉”。

网友悼念于海。

  还有一位网友分享了自己的一段儿时回忆,他说,小时候电视台播放《太极宗师》,每晚一集,有一次他家里的电视坏了,便去邻居家里看。当时他看到邻居家的姐姐正拿着日记本记主题曲,直到现在他还能想起当时的歌词“天已幕,月如初”。他表示,一瞬间,这些画面仿佛就在昨天。

  “练武之人就该有向强手挑战的勇气。”虽然于海老师已经离我们而去,但是他秉持的武术精神仍将激励着许多人,在人生的道路上勇敢前行。(完)

36项关乎农业农村发展的重大科学命题发布******

  光明网讯(记者宋雅娟)“突破性作物新品种培育的遗传学基础”“农作物数字化育种技术创新与体系创建”“重大作物病害新靶标发掘与绿色农药创制”……在12月16日举办的2022中国农业农村科技发展高峰论坛暨中国现代农业发展论坛上,中国农学会公开发布了36条农业农村重大科学命题。

  本次发布的科学命题,经业内权威专家从前瞻性、全局性、产业发展紧迫性、科学规范性等维度开展多轮次咨询、多视角凝练、多领域适配后产生,学科领域丰富多样,涵盖农学、植保、园艺、土化、畜牧、水产等多个领域。

  这些科学命题体现了战略性、基础性、前沿性、交叉性,聚焦国家战略科技力量和战略性新兴产业;关注生物育种、基因编辑、生物安全等重点领域的基础研究问题、颠覆性及关键核心技术;涵盖品种、农机、植保、防灾等关键环节。

  据悉,开展科学命题的凝练发布旨在为提升农业农村科技创新有效性、针对性、适配性和前瞻性,引领科技创新趋势和科研攻关方向,破解农业农村发展科技瓶颈。

  1.粮豆产能提升和复合种植的生物学基础与生态效应

  基于“稳粮增豆”粮豆复合种植的科学需求,创新选育抗豆类除草剂粮作品种,研发配套关键技术和机械,组织生态适应性研究,构建高效育种和示范推广体系。

  2.育种导向的农作物重要基因挖掘与新种质创制

  基于农作物种业转型升级对重要基因和新种质的需求,利用多个育种群体,在目标环境下开展多年、多点、多组学测试,构建育种大数据,在育种过程中高通量挖掘关键基因,创制和筛选优良新种质。

  3.农作物杂优群与杂种优势形成机理解析

  剖析我国主要农作物杂种优势群的形成和改良规律,阐明杂种优势形成的遗传和分子机理,建立不同作物杂种优势的预测模型,促进强优势农作物杂交种的分子设计和培育。

  4.突破性作物新品种培育的遗传学基础

  大规模挖掘优异新基因并解析其遗传调控的分子网络,破解重大品种的底盘遗传基础,提升定向设计育种的工作效率和效果。

  5.氮高效利用的遗传基础与调控网络

  加强作物氮高效利用的遗传基础研究,培育高产和氮高效协同改良的新品种,在减少氮肥投入的情况下持续提高作物产量。

  6.农作物数字化育种技术创新与体系创建

  利用智慧农业工具,开展数字育种技术创新及配套体系创建,升级打造农作物精准育种平台,加速推进我国进入智能设计育种4.0时代。

  7.作物品质性状形成的遗传学基础与调控网络

  运用遗传学、组学、生物信息学和合成生物学等先进技术,阐明作物品质复杂性状的遗传学基础,解析分子调控网络,为创制优质种源、增进全民健康奠定基础。

  8.作物高光效的分子基础

  阐明主要作物中光合机器发育、调控、延寿及抗逆的分子机理,揭示植物光保护、光呼吸的新机制,破解作物光合效率与环境的互作机制,构建作物高光效的调控网络,奠定主要农作物高产育种的重要基础。

  9.热带作物产量与品质协同调控机制

  以橡胶树、香蕉、木薯等重要热带作物为研究对象,挖掘调控产量和品质形成的关键基因,阐明产量和品质性状之间的互作调控网络,揭示复杂性状的遗传演化机制,为创制高产优质新种质奠定基础。

  10.农业合成生物学育种技术

  通过对优良性状的解析制定多基因表达调控的环路设计方案,整合不同优良性状的调控网络和互作机制,完善多基因、大片段与染色体水平的基因操作等底盘技术,对优化的目标性状组合进行设计合成,最终实现设计育种的目标。

  11.园艺作物重要育种价值的基因挖掘与种质创制

  挖掘有重要育种价值的园艺作物基因,并用于创制新种质,选育具有自主知识产权的优异品种,促进园艺产业打赢种业翻身仗、保障周年供应、实现高质量发展。

  12.园艺作物响应设施逆境和连作障碍的分子基础

  聚焦克服设施逆境和连作障碍的需求,解析园艺作物响应设施逆境和连作障碍的关键基因调控网络及分子机制,奠定园艺作物品种基因改良和绿色环控技术研发的理论基础。

  13.园艺作物嫁接愈合机制与智能控制

  研究接穗-砧木嫁接亲和/排斥互作机制,鉴定决定愈合及后期表型关键基因,量化嫁接愈合进程温、光、水、肥环境管理参数,筛选优良砧木品种,创建愈合期多元综合感知与控制系统。

  14.害虫免疫系统调控及免疫抑制剂创制

  解析害虫免疫调控机制,开发靶向抑制害虫免疫系统的新型农药,提升杀虫效率,减少杀虫剂使用,促进农业绿色可持续发展。

  15.重大作物病害新靶标发掘与绿色农药创制

  挖掘原创性分子靶标,创新分子设计技术,创制高效、低风险的绿色农药,加强产业化及应用推广,持续提升病害防控效能。

  16.重大跨境迁飞性害虫群聚灾变机制与精准预警

  解析重大害虫跨境迁移规律及群聚成灾机制,创新智能化监测预警系统及区域性绿色防控技术,实现迁飞性害虫精准预警及科学防控。

  17.盐碱地“以种适地”生物学基础与潜力提升

  选育耐盐碱植物,筛选噬盐微生物,突破改良共性技术和水肥个性关键技术,创制改土新材料新装备,形成以种适生作物生物学基础与潜力提升的解决方案。

  18.土壤碳汇与耕地质量提升

  探索构建不同区域高产农田土壤腐植酸组分含量与比例指标体系,利用秸秆高效转化黄、棕、黑腐植酸技术,快速增加土壤有机碳,提升耕地地力。

  19.耕作制度精准区划与边际土地优化利用

  创建集食物丰产、优质和资源持续利用于一体的耕作制度区划新方法,制定耕作制度精准区划,优化边际土地利用,提升食物产能。

  20.畜禽智能表型组与基因组育种

  开展大规模、智能化、高精度表型测定,结合创新基因组检测与分型技术,实现基因组精准选种选配,促进畜禽新品种培育与配套系选育。

  21.畜禽动态营养供给精准评估与调控

  根据畜禽遗传背景、生长阶段、生理状态、养殖规模的不同构建其动态营养需求模型,采用AI影像评估畜禽营养状态,通过智能饲喂技术等进行精准营养与调控,提升畜禽饲料利用效率。

  22.地方畜禽优异性状遗传基础与环境互作

  建立适于地方畜禽遗传资源抗逆表型鉴定评价方法,阐明抗逆表型形成中遗传与环境因素互作关系,促进地方畜禽遗传资源的保护与利用。

  23.节粮高繁畜禽种质资源创制和培育

  充分发掘调控畜禽的生长速度、饲料转化利用与代谢、繁殖性能相关的分子机制与关键基因,运用前沿的育种技术手段,创制节粮高繁殖性能的畜禽新品种。

  24.动物体细胞克隆和高效繁殖技术

  创新应用动物体细胞克隆技术、活体采卵体外受精技术、同期发情超数排卵胚胎移植技术、单精注射技术等高效繁殖技术,加快优良个体的遗传资源利用,保护利用濒危种质资源和缩短育种进程。

  25.重要动物疫病区域净化技术的集成创新

  围绕养殖到屠宰全链条,系统集成风险识别和生物安全防控技术,建立动物疫病区域净化模式,保障畜牧业持续健康发展。

  26.新发与重现动物致病与免疫机制

  研究新发与重现动物疫病病原感染致病、病原拮抗或逃逸宿主天然免疫、病原的抗原结构及其诱导保护性免疫应答的分子机制,为疫病防控技术与产品的创新奠定理论基础。

  27.水产优异种质资源全景图谱与新种质创制

  创新计算生物学和前沿育种技术,开展水产优异种质资源精准鉴定,绘制种质表型和基因型全景图谱,创制突破性新种质,加快填补水产种业空白。

  28.渔业碳汇形成机制与扩增途径

  阐明渔业碳汇形成过程与机理,建立计量标准,创新扩增途径,推动渔业碳汇产品市场化交易实践。

  29.水产优异种质资源多样性与演化机制

  解析优异水产品种形成规律,挖掘一批优异新基因资源,创制更多的优异新种质,力争在遗传多样性规律解析、多组学数据整合、重大品种形成规律分析等方面取得新突破。

  30.动植物表型性状信息高通量精准获取与智能解译

  创制面向生命和生长环境信息的高精度传感器,建设人机协同的多尺度、多生境、多区域动植物数据信息采集体系,实现表型性状的高通量精准获取与智能解译,促进智慧农业发展。

  31.土壤-机械-作物互作机制与智能农业装备

  数字化表征农田作业系统土壤-机器-作物互作的力学行为和演变规律,创新多元异构互作信息的机载协同感知、实时在线监测和自适应调控技术,创立机器作业新原理、新方法和新机构,创制高性能智能农业装备,促进现代农业高质高效绿色发展。

  32.农情信息感知、智能监测与智慧决策

  创建高效的“天-空-地”一体化的农情信息感知系统,创新AI+大数据结合知识驱动的智能监测、智慧决策技术,推动农业生产迈入可感知、可定量、可计算、可调控和可预测的智慧生产阶段。

  33.倍性操作与快速驯化技术

  系统鉴定重要野生种、农家种、育成品种遗传与表型特征,挖掘农业生物种质资源在驯化和改良以及区域适应过程中的全景组学基础与多样性产生机制,建立杂交育种和单倍体育种以及多倍体育种的技术体系,大幅度缩短育种年限。

  34.关键蛋白定向进化技术

  建立作物基因定向进化的新方法,充分挖掘重要基因新等位型,突破现有种质资源限制,与理性设计相结合,实现根据生产需求人工“定制”优异性状,实现关键蛋白在分子水平的模拟自然进化,提供关键功能位点的人工进化新方法。

  35.多基因叠加操作技术

  开发针对微效多基因决定性状的多基因操作技术体系,挖掘与利用更多目标性状,克服目前单基因决定的性状发掘与利用的局限,提升其在种业创新应用中的价值。

  36.农业干细胞育种技术

  建立大家畜的多能性干细胞系,通过体外配子诱导分化,体外胚胎制备与基因组筛选相结合,突破体内发育的固有时间周期,极大缩短育种的世代间隔,加速育种进程,努力克服现有育种体系存在的固有世代间隔,特别是缩短大家畜世代间隔时间。

中国网客户端

国家重点新闻网站,9语种权威发布

彩神app地图